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CONICAI, SHELL: VIBRATTONS

By Daniel H. Platus
Aerospace Research Associates, Inc.
West Covina, California

*

SUMMARY

An analytical method is presented for predicting the natural vibration
frequencies and mode shapes of thin-walled conical shells rigidly fixed at one
end and free at the other. Both extensional and inextensional theories are
examined separately and a simplifying approximation is introduced for combining
the results for the general case. The extensional theory is treated by using
a Rayleigh-Ritz procedure with assumed mode shapes in the form of polynomial
expressions in the axial shell coordinate, selected to satisfy the fixed-end
displacement conditions. The natural frequencies and mode shapes are computed
by using an IBM 7090 machine program developed for the extensional case.
Results obtained by the approximate method show good agreement with experi-
mental values obtained from actual vibration tests of thin-walled conical
shells.

TINTRODUCTION

Among the earliest treatments of conical shell vibrations was an analysis
by Strutt (ref. 1) of the inextensional vibrations of the fixed-end, free-end
conical shell. It will be shown in the present analysis that inextensional
theory alone cannot accommodate the boundary conditions of a completely
restrained edge. Consequently, the actual geometry investigated by Strutt was
that of a free-end conical shell with a semiflexible attachment. The inade-
quacy of inextensional theory was also borne out by Van Urk and Hut (ref. 2) in
their experiments to verify the applicability of Strutt's formula. Frequencies
measured by vibrating thin aluminum shells differed from Strutt's predictions
by a factor of 2 to 3.

The general problem, including extension of the middle surface of the
shell, was investigated by Federhofer (ref. 3), who derived a frequency expres-
sion for vibrations of a truncated conical shell rigidly restrained at one edge
and partially restrained at the other. The calculation was based on an energy
method of Rayleigh, with assumed mode shapes in the form of simple power series.
The mode shapes were selected to give a nongsingular solution for the complete
conical shell restrained at its base and at its apex. This configuration was
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numerically evaluated as a special case of the problem. More recently,
Grigolyuk (ref. 4) solved a similar problem using mode shapes which approximate
a simply supported edge; that is, the radial and tangential deflections vanish
at the edges, although the shell is unrestrained in the axial direction.
Herrmann and Mirsky (ref. 5) investigated the same problem using a Rayleigh-
Ritz method with sinusoidal mode shapes which exactly satisfy the equations of
motion for a cylindrical shell in the limit of zero half-angle. Therefore, it
would be expected that their results would apply only for cones with small
divergence half-angles. Goldberg et al. treated the fixed-free cone, con-
sidering first only the axisymmetric (breathing) modes of vibration (ref. 6)
and later the unsymmetric modes (refs. 7 and 8). The method of references 6
to 8 involves a technique of numerically integrating the differential equations
of motion and is applicable to an arbitrary set of end conditions. Shulman
(ref. 9) solved the simply supported case by a general energy method which,
with enough terms included in the mode shapes, would proébably give accurate

results.

Recently, Saunders et al. treated two cases of the free-end cone. In the
first case (ref. 10), the cone is attached at the smaller end to a segment of
a spherical shell and is free at the other end. Only inextensional theory is
considered and the calculated frequencies are found to agree closely with
experimentally obtained values. In the second case (ref. 11), the cone is
assumed to be completely restrained at one end and free at the other. Both
extensional and inextensional theories are considered using a Rayleigh-Ritz
procedure. Assumed mode shapes are represented in the form of simple polynomial
expressions and the assumption is made (with no apparent justification) that
two of the three principal extensional strains are zero. The resulting mode
shapes, in view of this assumption, do not satisfy the fixed-end conditions on
displacements, and it was found that poor correlation was obtained with fre-
quencies given by the theory of the present paper. It is of interest to note
the close agreement between inextensional theory and experiment in Sgunders'
paper on the sphere-cone combination (ref. 10). As shown by Van Urk and Hut
(ref. 2) and also observed in the present study, inextensional theory alone is
not adequate for the treatment of a completely rigid edge. Apparently, the
flexibility introduced at the sphere-cone Jjuncture is sufficient to permit the
cone (which represents most of the inertia) to vibrate inextensionally. It is
shown herein that this requires that the cone generators remain straight, a
condition which cannot be satisfied for a built-in edge.

The present treatment i1s a generalization of the method of Saunders et al.
for the extensional vibrations, using polynomial mode shape expressions which
satisfy all fixed-end displacement conditions. An arbitrary number of terms
may be included in the polynomials to give any desired degree of accuracy within
limits dictated by computational complexity. A simplifying approximation is
introduced which permits the extensional and inextensional cases to be computed
separately and the results are combined for the general case. Results of this
method are compared with experimental results obtained by using induction

vibrators.
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SYMBOLS

radius of fixed end of cone; cylinder radius

coefficients of assumed mode shape (radial displacement) where
i=1,2,3 .. .n

coefficients of assumed mode shape (tangential displacement) where
i=1,2,3 .. .n

coefficients of assumed mode shape (axial displacement) where
1i=1,2 3 ...n

Young's modulus of elasticity

frequency, cps

shell thickness

length of cone (or cylinder)

tan o

nuﬁber of terms in displacement polynomials
radial cylindrical coordinate

mode number

time

kinetic energy

surface integral associated with kinetic energy, independent of
time (see eq. (16))

axial displacement component
circumferential displacement component
strain energy

surface integral assocliated with stralin energy, independent of time
(see eq. (17))

radial displacement component
axial cylindrical coordinate

cone half-angle



A combined frequency parameter or eigenvalue (see eq. (22))

AR nondimensional extensional freguency parameter
AT nondimensional inextensional frequency parameter
€1,€25€10 middle-surface strains

KisKoyK1o principal changes of curvature

F

B =M tan a

v Poigson's ratio

p mass density

@ circumferential cylindrical coordinate

® frequency, rad/sec

Subscripts:

E extensional

I inextensional

Dots over quantities denote differentlation with respect to time.

Primes denote derivative with respect to x.
THEORY OF CONICAIL, SHELIL VIBRATTIONS

General Considerations

In studying the vibrations of thin shells, the first question to be con-
sidered is whether or not the middle surface of the shell undergoes extension.
If extension does not occur, the shell will deform in bending only, and the
vibrations are called inextensional or flexural. Vibrations consisting only of
stretching deformations are called extensional. In general, both types of
vibration will occur simultaneously. However, it can be shown from energy con-
siderations that, for very thin shells, vibration will be predominantly inex-
tensional if the associated deformations are compatible with the prescribed
edge conditions of the shell. For example, the strain energy of deformation
will be of the form (ref. 12)

L



(1)

Extensional)2 th Bending 2
deformation deformation

Strain energy = Ah(

where h 1s the thickness of the shell and A and B are constants. As h
becomes small, the coefficlent Bh> of the bending term will become much
smaller than the coefficlent Ah of the stretching term. According to the
principle of minimum potential energy, the displacements will be such as to
minimize the total strain energy and, therefore, will not involve stretching if
the resulting bending deformations are compatible with the boundary conditions.

It will be seen for conical (or cylindrical) shells that only special con-
ditions of edge restraint can satisfy the requirements for inextensional defor-
mations. In particular, these conditions require that the axial generators
remain straight. This can occur only if the cone is completely unrestrained or
if it is restrained around its circumference 1n a special manner resembling
that of a hinged joint. Any other edge condition will require bending of the
axlal generators which, as will be shown, cannot occur without some stretching
of the middle surface. The fixed edge under investigation here is such a con-
dition and, consequently, both extensional and inextensional deformations must
be included.

Inextenslonal Vibrations

The middle-surface strain-displacement relstlons for & conical shell,
using the nomenclature of figure 1, are given by

€1 = du cos a A

1" 3

ep = %(g% - W cos o + u sin a> g (2)
i =X cog o - YSIn o  10u

12 7 3% r r Bgy

The conditions of inextension of the middle surface require that
€] = €p = €15 =0 (3)

which, for free vibrations harmonically varying in time 1, are exactly satis-
fied for the displacement functions



u(x,g,t) = - %(Aa - B tan a)cos a sin sf sin wt
v(x,0,t) = (Ax + B)cos s@ sin wt > (+)
i 2
w(x,8,t) = - S |alx + 2 sin a cos a} , pf; _ sin a) sin sf sin wt
cos « g2 s2 )

The parameter s is the number of circumferentisl waves or "mode number." The
value s = 1 represents a simple rigid body translation which, for inexten-
sional vibrations, involves no deformation of the shell and, therefore, cor-
responds to zero frequency. The first few even and odd modes are shown in

figure 2.

It can be seen from equations (4) that the displacement functions which
satlisfy the inextensional conditions (eq. (3)) are constant with respect to x
for the axial component wu and linear in x for the tangential and radial
components v and w. This indicates that a conical (or cylindrical) shell
can only deform inextenslonally if the generators remain straight as, for
example, for a freely suspended shell. Any other conditions of edge restraint
which prevent motion of the type indicated by equations (4) would require some
extension of the middle surface.

For the fixed-end cone of figure 1, all three displacements should vanish
at x =0 as well as the slope of w; that is

u(O,fé,t) = V(O:¢:t) = W(O)¢Jt) =0

<§3> _ o (5)
3% )0, 4, %)

It is seen from equstions (4) that only one of these conditions may be satis-
fied. Consequently, the fixed-end cone does not strictly lend itself to inex-
tensional snalysis. By selecting, as an approximation, the condition that the
radial displacement w vanishes at x = 0, equations (4) reduce to

\
As cos
u(x,P,t) = ® _ sin sf sin wt
a1 = sina,
g2

a sin o cos 4

2( sin2a>

S - ——
a2

sin sf sin wt

(6)

—~

v(x,0,t) = -A|x - cos sP sin wt

Asx

W(x1¢1t)

cos



where the coefficient A, which represents the amplitude of the motion, is
arbitrary. The second term in the brackets of the v displacement is quite
small for small cone half-angles (and/or for large values of s). In the limit
as the half-angle approaches zero (i.e., for a cylindrical shell), the v dis-
placement also vanishes at x = O leaving two of the boundary conditions
unsatisfied. Nevertheless, it will be shown that beyond a certain value of s
the boundary conditions become unimportant and inextensional theory is adequate
for predicting the natural frequencies. For lower values of s the exten~
sional frequencies will be shown to predominate.

The inextenslonal frequencies are obtained from the mode shapes (egs. (6))
by equating the maximum values of potential and kinetic energies. The poten-
tial energy, or strain energy of bending, is expressed in terms of the princi-
pal changes of curvature, which are defined by

2 ™
Ky = é—% cosZq,

Jx

2
o, = COS @ §z N 1 O w + sin o cos a éﬁ > 7
2 2 df 12y ¢2 r ox
2 2

oo o COsTa ov  ein a cos a v 4 o8 a 3w sin a'§z
12 T oS% 2 T ox op r2 op)

The total straln energy involves an integration of the changes of curvature
over the surface of the shell according to

3 21 1
_ Eh 2 2 olr df ax
I o1 - 42) “/;Lo »/;=O[<1 * kg Bveyep + 2(1 - V)“121_<:—62La (8)

where E and v are Young's modulus of elasticity and Polsson's ratio,
respectively, and the other parameters are shown in figure 1. Similarly, the
kinetic energy is an integral over the surface of the shell of the square of
the velocity and is given by

T=%phv/;22fzo(ﬁ2+¢2+c«2)ff¢;‘f (9)
= =

Ccos «

where p 1is the mass density of the shell and the dot denotes differentistion
with respect to time. On evaluating these integrals by use of the displace-
ments of equations (6) and equating maximum values of potential and kinetic
energies, there is obtalned for the inextensional frequencies

2afcos o Bp(l - b

(2 - = 1/2/y /2
o = hs(s2 - 1) ‘VE)] (_) (10)
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2 > 2 _ 2 2
N = (1 - 885} 15 2 2 - 1)(1 - sinfe) KL - 1) . (1 v)(L - l)sin a
L 52 212

52 <212
D = _1_(L2 - 1) <1 N 52 N tanfa _ o tanea) _ _2_(L5 _ 1)(1 _ sin2a)(l L 82
2 cos®a 82 3 52 cosZa,

L=1+A tan «

A=

Pl

In the limiting case of zero cone half-angle (a = 0), equation (10) reduces to
the simple result

s + 6(1 - v) 1/2

_ hs(s2 - 1) E 1/2 15
LT 282 [39(1 - V2_)] % + s2(s2 + 1) ()
A

for the inextensional vibrations of a fixed-end, free-end cylinder.

Equation (10) for the conical shell was evaluated over a range of geome-
tries and the results are presentg%»in figures 3(a) to (c) in terms of a non-

dimensional frequency parsmeter 412, where T = Y and
AT

_ (1 - ve)pkua%mIE

z (12)

A

Values of Ay from which figures 3(a) to (c) were plotted are given in table I.

It can be seen from equation (10) that the inextensional frequencies are
directly proportional to the shell thickness and approximately inversely pro-
portionsl to the square of the radius. This dependence on radius accounts for
the large variation in the frequency parameter with cone half-angle in fig-
ures 3(a) to (c) since, for a specified fixed-end radius a, the free-end
radius, where deflections are maximum, 1s proportional to the half-angle.



Extensional Vibrations

It was seen in the foregoing analysis that the conditions of inextension
of the middle surface (eq. (3)), were sufficient to describe the functional
form of the inextensional displacement components. For extensional vibrations,
conditions such as these do not exist. Consequently, the extensional mode
shapes are not known and must be approximsted by assumed modes.

By following the approach of Saunders et al. (ref. 11), the mode shapes
are represented by polynomials in the coordinate x, selected to satisfy the
fixed-end conditions (egs. (5)). The free-end conditions are less important
since, as will be seen, the maximum extensions occur at the fixed end. The
extensional displacement functions, analogous to equations (4) for the inexten-
slonal displacements, are then written in the form

~
w(x,8,t) = <A1x2 + A2X3 + A3xlL + .00 o Anxn+1)s sin s sin wt

= 2 3 n
v(x,p,t) = (le + Bpx© + Bzx” + . . . + BpX )cos sf sin wt > (13)
u(x,¢,t) = (Clx + 02x2 + 05x3 + . . .+ cnxn)fig_ig sin wt )

where the coefficients Aj, B4y, and C4y must be determined from energy con-

siderations. The extensional strain energy is an integral of the extensional
strains (egs. (2)), similar to equation (8) for the bending energy in terms of
changes of curvature, and 1s given by

P G )] elzﬂ r dp ax (14)

Eh 2n 1 5 5
VE = f f €l + 62 l >
2(1 - v25 =0 Y x=0 2 cos a

It can be shown from the principle of the conservation of energy and use of the
calculus of variations that the mode shapes which most nearly approximate the
true normal modes are those which render o< (the square of the natural fre-
quency) stationary with respect to the coefficients A;, Bj, and Cj. This

is equivalent to the conditions
0 )
OAj
T
OB1
”
oC1

(15)

il
o
"

]

(1=1,2, ...n)




If the mode shapes (egs. (13)) are substituted into the kinetic energy expres-
sion (eq. (9)), the kinetic energy can be written in the form

T(x,B,t) = w°T*(x,@)cosawt (16)

where T*(x,$) 1is a kinetic energy integral over the surface of the shell and
is independent of time. The potential energy (eq. (14)) can be written in a
simijar form

Va(x,8,t) = V¥(x,f)sinwt (17)

where, in like manner, V*(x,¢) is a potential energy integral over the sur-
face of the shell, independent of time. Since the maximum values of potential
and kinetic energies must be equal, the square of the frequency is found to be

0)2 _ V*(X)Q)
"~ (x, 6) e

Differentiating w2 with respect to Aj gives

¥ BV*(X,Q) - V¥ aT*(XJQ)
OAj oAy

abe = — — = Q0
OA4 T*2
which, with equation (18), may be written
2 [, 8) - wPr(x,8)] = 0 (29)
i

Expressions with By and Ci can be obtained in a similar manner. The opera-

tions of equation (19) result in a set of 3n linear homogeneous equations in
the 3n coefficients Aj, By, and Cj. For a nontrivial solution, the deter-

minant of the coefficients must vanish; this condition constitutes an eigenvalue

problem in w?. The characteristic determinant for extensional vibrations then
has the following form and is symmetric about the main diagonal:

| I
aij AE + blj : ci,j : d‘ij
————————— l-———-————-—l—-——————-—
Cij : eij AE + fij : gij =0 (20)
————————— I——-—-—————I————————
d‘ij : gij : hi,j AE + kij

where 1 and Jj=1,2, . . . n,

10



The coefficients of the determinant are given in appendix A. There are nine
subsections which may be identified with various types of coupling between the
displacements u, Vv, and W. For the coefficlents of appendix A, the coupling
between displacement components is as follows:

] )
1 i
] 1
i i
W - W : W -V 1 W - 1u
1
1 i
_________ B VO S
1 [}
: 1
V-w o v-v | vV -u
1 1
1 1
—————————— .————————-—————'———————————————
! 1
1 1
u-w | u-v | u - u
1 1
1 1
1 1

The coefficients aij, ©ijs and hij represent contributions to the kinetic

energy from the displacements w, v, and u, respectively. Previous investl-
gators have neglected the inertia terms in the axial and circumferential direc-
tions, which would correspond here to setting e1j and hij equal to zero.

Breslavskii (see discussion of ref. 13) showed for a cylinder that this is
permissible for s 2 3. It can be seen from a comparison of the magnitudes of
the coefficients ajj, ejjy, and hjy 1in appendix A that the coefficients €13

are of the order l/s2 and the coefflclents hjj are of the order l/%2su of
the coefficients aj 3. Since A 2 2 for most cones of practical interest, the
coefficients hij may be neglected for all values of s except, possibly, for

the rigid body mode s = 1, depending on the size of A. The magnitudes of
ejj 1n comparison with ajj substantiate the observation of Breslavskii that

circumferential inertia may be neglected for s 2 3.

The extensional frequencles were computed by using an IBM 7090 program to
evaluate the characteristic determinant (eq. 20)). All inertia terms were
retained and numerical data were obtained over a range of cone geometries with
six terms in each of the displacement polynomials. The dependence of fre-
quency on number of terms included 1n the displacement polynomials and limita~
tions of the computer program are discussed in appendix B. Computed extensional
frequencies covering the same range of geometries for which the inextensional
frequencies were computed are plotted in figures 4(a) to (c) in terms of the
parameter Ap, which is defined by equation (12) with the subscript E in

place of I. Numerical values from which figures 4(a) to (c) were plotted are
given in table IT. It can be seen from a comparison of these curves for dif-
ferent values of A that the extensional frequencles are relatively independ-
ent of A. It is also verified from equations (9), (14), and (18) that the

11



frequencies are independent of the shell thickness h. Since Ay 1is propor-

tional to a2, it is concluded that the only significant geometry effect is an
inverse dependence of the extensional frequency on the fixed-end radius a.

Combining of Extensional and Inextensional Freguencies
A rigorous solution of the general vibration problem in which both exten-

sional and inextensional deformations occur would require that the total strain
energy contain both the extensionel strains and changes of curvature; that is,

V = VE + VI
2n 1
___® f f Elz e+ oveye, + L2 V) 6122]
2(1 - y2) o Jx=0 2
2
n2{ 2 2 o|\r af ax
+ E[{l + Ko + 2'VK'.1K2 + 2(1 - 'V)K.:Le] oos o (21)

The solution would proceed exactly as for the extenslonal case, except now
equation (21) would be used for the strain energy in place of equation (1k4) for
purely extensional deformations. It 1s seen from a comparison of the exten-
sional strains and changes of curvature (egs. (2) and (7)) that the bending
terms in equation (21) would add considerably to the complexity of the problem.
The results of figures 4(a) to (c) show that the purely extensional frequenciles
are maximum at s = 1¥ and decrease rapidly with increasing mode number. It
can be shown that the extensional frequency parameter Ay 1s approximately

inversely proportional to the third or fourth power of the mode number s.
Similarly, figures 3(a) to (c) show that the inextensional frequencles increase
monotonically with s, the frequency parameter Ay belng approximately propor-

tional to the fourth or fifth power of the mode number. Consequently, a plot

of actual frequency as a function of mode number will show a minimum frequency
at a mode number for which the extensional and inextensional frequencies are
approximately equal. Also, since both extensional and inextensional frequen-
cies depend strongly on s, only the two or three frequencies in the vicinity
of the minimum frequency will represent comparable magnitudes of both exten-
sional and inextensional deformations if the minimum occurs at a relatively low
mode number. The remaining frequencies will be either predominantly extensional
or predominantly inextensional depending on whether the frequencles lle to the
left or to the right of the minimum, respectively.

In view of the foregoing observations, a simple approximation 1s proposed
for obtaining the frequency response of a fixed-end, free-end conical shell in
terms of the extensional and lnextensional frequencies, each calculated sepa-
rately. If it is postulated that the kinetic energy (eq. (9)) is the same for

*Excluding the "breathing mode," s = O, which will have a greater
frequency.
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the extensional and inextensional cases, then the combined frequency parameter
A 1is approximately the sum of the extensional and inextensional frequency
parameters; that is,

A=A + A (22)

vhere Ay or A; 1is defined 1n accordance with equation (12). (Note that the
total strain energy corresponding to equation (22) is simply the sum of the
extensional and inextensional components as given in equation (21).) The
validity of this spproximation stems from the fact that the difference between
the extensional and inextensional mode shapes has little effect on the total
kinetic energy, for the following reasons:

(1) Extensional strain energy is directly proportional to shell thickness,
whereas inextensionsl or bending energy is proportional to the third power of
thickness. Consequently, extremely small extensional displacements, in com-
parison with bending displacements, will appreciably influence the total strain
energy and frequency without causing a significant change in the displsacement
vector and, hence, the kinetic energy.

(2) Extensional deformations are maximum at the fixed end of the shell
where all displacements and, in particular, the radial displacements tend to
zero. Since kinetic energy is proportional to the square of the velocity, the
greatest contribution to the kinetic energy occurs at the free end of the shell
where displacements are maximum and are less influenced by the fixed-end
conditions.

Approximations

Beam analogy for cylinder.- If the displacements are represented by the
expressions

~
T
u(x,p,t) = Eﬁg&fl sin sP sin wt

v(x,p,t) = -f(x)cos sf sin wt 5 (23)

w(x,8,t)

1

f(x)s sin sP sin wt
~
where f(x), the axial mode shape, satisfies the conditions

£(0) =£'(0) =0 (24)

then all the fixed-end displacement conditions (egqs. (5)) will be satisfied with
the additional restraint (which is not, 1in general, true) that v' =0 at

X = 0. For the fixed-end, free-end cylinder obtalned by setting o« =0 and

r = a in the strain-displacement relations (egs. (2)), the mode shapes of

13



equations (23) will cause the strains € and €;, to vanish, leaving ej
the only nonvanishing component.* The extensional strain energy then reduces to

nEha sinw
e 1 - Ve L/;}—o ~/;~o "1 “af ax - ( 12) Z‘ f [f"(x] dx (25)

and the kinetic energy, neglecting the axial component of inertia, becomes

2n 1
> f=o L=O(v + )d¢ dx
= éqtphaa)g(s2 + l)cosgwt fZEf(X)]edX (26)
0

On equating the maximum values of kinetic and potential energles, there is
obtailned for the purely extensional vibrations

1
14 f [£"(x)] 2dx
b = (27)

f [f(x:] ax

which is precisely the expression for the bending frequencies of a uniform beam
of length 1, having a ratio of modulus of rigidity to mass per unit length

L A
—7’—. The ratio of the integrals in equation (27) has a set
s2(s2 + 1)

C
of values given by —E— for the various beam modes, which gives for the
1
extensional vibratlons the simple result
c b
= (28)
A =
52(52 + 1

equal to

Values of Cp, from reference 14, are 0.597x and 1.49x for the first and second
cantilever beam modes, respectively. )

Inextensional frequencies are found from the previously derived result of
equation (11), and the actual frequencies are obtained by combining the exten-
sional and inextensional frequencies by using the simple approximation of

equation (22).

A comparison of frequencies calculated by this approximate method with
experimental values obtalned from reference 15 is given in table III. Also

*In the method presented in reference 11, €; =€p =0 and €35 £ 0.
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shown, for comparison, are the results of another spproximate theory developed
by V. I. Weingarten (ref. 15) which also makes use of the vibrating beam results
in conjunction with the Donnell differential equation for cylindrical shells.
For the first beam mode, results obtained by using the IBM program described
previously, with six terms in the displacement polynomials, are also shown for
comparison. The frequencies are tabulated for various values of s for the
first two beam modes. It is noted that the approximation of combining the
extensional and inextensional frequencies gives good results for values of s
in the neighborhood of and beyond the s value corresponding to minimum fre-
quency. At lower s values where the extensional frequencies predominate, the
results are not as accurate. However, 1t 1s significant to note that the dis-
agreement is a result of the inaccuracy of the extensional component and not of
the approximatlion of combining frequencles, which appears in this case to be
quite valid.

Cone.- In extending this approximation to the cone, 1t 1s no longer pos-
sible to make use of the beam analogy because of the additional terms in the
strain-displacement relations (egs. (2)). Nevertheless, the assumptions that
the v and w displacements have the same axial functional dependence and
that the u displacement is the derivative of this function considerably
simplify the selection of mode shapes. For example, if the function f(x) in
equations (23) is represented by an nth order polynomial of the form shown for
w 1in equations (13), then the number of arbitrary constants is only one-third
of the number required in the general method in which all three displacement
polynomials have different coefficients. However, since the mode shapes of
equations (23) subject to the conditions of equation (24) will only satisfy the
fixed-end conditions for a cylinder, it would be expected that these modes
would approximate the fixed-end cone only for small half-angles.

Consider a simple two-term polynomial for f£(x) of the form

£(x) = Ax® + Bx” (29)

Then,

g(zAx + 3Bx2) )

u(x,P,t) = - sin sf sin wt
> 0
V(X:¢:t) = -(AX2 + BXB)cos s¢ sin wt (30)
w(x,P,t) = (Ax2 + BXB)S sin sf sin wt |
The eigenvalues must satisfy the quadratic equation
a11bos + Bogbqq - 28q5b bybos - bypt
2 11722 22511 12712 11-22 12
Ao ' 5 - 5 =0 (31)
81180 ~ 812 811%22 ~ 812
15
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which has two real, posltive roots. The coefficients a;jy and bjy corre-
sponding to the mode shapes of equations (30) are given in appendix C.

The approximation involved by taking only two terms for f£(x) can be
evaluated for the limiting case of zero cone angle by setting o equal to zero
and comparing with equation (28) obtained from the cantilever beam analogy for
the cylinder. The coefficlents of appendix C reduce to

~

aj] = %(52 + l)
ajp = 3(s2 + 1)) (522)
8op = %(52 + %Z
and
8'\
by = - 2
bip = - i§> (32b)
24
bpop = - sE;

which give for the smaller root of Ay from equation (31) the value

12.48
An =
E = 32,1 (33)

The constant (0.597:1)h in equation (28) is equal to 12.37, which gives a dis-
crepancy of less than 1 percent in Ag.

EXPERTMENTAL STUDIES

Vibration Tests

Vibration frequencies of three small conical shells were experimentally
determined by using induction vibrators. Two cones were the same in geometry
except for shell thickness. A comparison of the experimentally determined fre-
quencies with the theoretical values predicted by equations (20) and (22) are
shown in figures 5(a) to (c), which also include a description of the cone
geometries. A comparison of figures 5(a) and 5(b) illustrates the effect of
shell thickness on the location of the minimum frequency. Since the geometries

16



are the same, with the exception of shell thickness, the extensional frequencies
should be the same, whereas the inextensional frequencies should be 60 percent
lower for the 0.006-~inch-thick-shell cone; this would shift the minimum fre-
gquency to the frequency corresponding to a higher mode number. This is clearly
indicated by the experimental results.

A general arrangement of the test setup is shown in figure 6, which
includes two induction vibrators mounted adjacent to the 0.010-inch-thick-shell
cone that is clamped to a solid table, a stroboscopic lamp for identifying the
mode shapes, and a counter for measuring frequencies. The initial test results
shown in figure 7 indicate a marked deviation of the lower mode extensional fre-
quencles from the theoretical values. This is belleved to result from incom-
plete end fixity. Subsequent tests, from which the data of figures 5(a) to (c)
were obtalned, were conducted with the fixed end of the cone imbedded in a large
mass of low-melting-point bismuth-tin alloy as shown in figure 8. The experi-
mental results so obtained show acceptable agreement with the theoretically
predicted values. The large discrepancy between these two sets of test data,
particularly for the s =3 frequency, illustrates that the extensional fre-
quencles are very strongly dependent on the degree of end fixity. For all tests
conducted with complete end fixity, neither the rigid body mode s = 1 nor the
s = 2 mode could be detected. This can possibly be explained in terms of a
nonlinear effect associated with a localized buckling of the shell, which is
described in the next section.

Figures 9 and 10 show two of the circumferential vibration modes obtained
by a photographic procedure utilizing the stroboscopic lamp apparatus shown in
figure 6. Also shown in figures 9 and 10 are two small metal elements which
were attached to the shell just opposite the vibrators to provide a greater
source of Induction energy in order to obtaln displacements sufficiliently large
for mode identification. The additlonal mass was shown to have a negligible
effect on the motion and frequencies of the shell (the same freguencies were
obtained to within 1 cycle out of 100 to LOO cycles per second with and without
the metal elements). It can be seen from figures 9 and 10 that the symmetry of
the mode shapes is extremely poor compared with the exact symmetry required in
a mathematical analyslis. This asymmetry is due primarily to the nonuniformity
of the shell around the circumference owing to the very small wall thickness
and the unavoidable kinks.

Nonlinear Effects

A plot of the relative magnitudes of the three extensional strain com-
ponents (defined by egs. (2)) for the fourth mode of a typlical cone configura-
tion (A = Lk, « = 15°) is presented in figure 11. It is seen that the maximum
extensional strain occurs at the fixed end and consists of the axial component
€. This strain corresponds to an axial stress which varies in tension and

compression around the clircumference of the shell as shown in figure 12. The
magnitude of this stress, for a given radial displacement at the free end, 1s
inversely dependent on the mode number s and is therefore maximum at the low-
est mode. This behavior can be seen from the inextensional mode shapes of
equation (6); that is, the axial displacement u which would result at the
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fixed end (x = 0) if the shell were unrestrained 1s prevented from occurring
and, thereby, produces the axial stress. By considering the ratio of u at
x=0 to w at x =1, 1t is seen that the axlal displacement (and corre-
sponding stress) for a given value of w 1s inversely proportional to se.
Since this stress occurs 1n compression as well as in tension, as shown in fig-
ure 12, there will be a critical value of stress for a sufficiently large
deflectlion YWaritical which can cause localized buckling (or at least nonlinear

behavior) of the shell. The thinner the shell and the lower the mode number,
the lower will be the radial deflection required for this buckling to occur.

CONCLUDING REMARKS

An approximate method has been presented for predicting the vibrations of
thin conical shells rigidly fixed at one end and free at the other. It has
been demonstrated that, by treating extensional and inextensional vibrations
separately, results can be obtained by a relatively simple analytical procedure.
Natural frequencies computed by use of this approximation show good agreement
with experimental results.

Extensional vibrations were computed by a Rayleigh-Ritz procedure with
assumed modes in the form of simple polynomials. The resulting elgenvalue-~
elgenvector problem was numerically evaluated with an IBM 7090 data processing
machine. The computer program developed for this solution requires double
precision accuracy and i1s limited to an 18 X 18 matrix, corresponding to a
maximum of six terms in each of the three displacement mode-shape polynomials.
Upon further examination of the matrix, 1t appears that the computer program
can be modified to permit a greater accuracy. Limitations of the present pro-
gram appear to result from retaining axial and tangential inertia terms which
become quite small compared with corresponding radial inertia terms for large
values of the circumferential mode number.

It may be noted that in order to facilitate application of the program
beyond a specified circumferential mode number, the axial and circumferential
inertia terms may be excluded. This modification will permit the present
matrix to be reduced to an unsymmetric matrix one-third the size of the
original matrix, and the order of the elgenvalue-eigenvector problem will be

reduced accordingly.

Since the present treatment of conical shell vibrations is limited to the
fixed-free cone, a logical extension of the theory would be the investigation
of other boundary conditions such as fixed-pinned, pinned-pinned, and so forth.
Such configurations are of particular importance for an understanding of space-~
vehicle dynamic response, and relatively little work appears to have been done

in this area.

Aerojet-General Corporation,
Azusa, California, January 26, 1965.
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APPENDIX A

DETERMINANT ELEMENTS OF EQUATI

ON (20)

The coefficients of the characteristic determinant for extensional vibra-
tions as given in equation (20) are as follows:

aij
Cij
diy

eij

= g2 1 L
ES<5+i+J+l++i+J>

= AcMoii vy

= MMy gag

= BaQﬂﬁA¢+g + 1*;&%—;-3>

B 2(1 n i T3 2+ ? " j>
=AMyt CE[; +ij 17 <1ii 3

i

Jv
Bl(uMi+J + Fa— j) + Cl(I_I'j

___2(1_'__“)
(KS)E 1+i+ ] i+j+2

= Mgy + D<1 +i§ 17 1iiu3 TH
—27\)+82 By = 27\2cos a
= A cos a By =By cos a
= Ay cos a C = —7\2(1 - v)
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APPENDIX B
CHARACTERISTICS OF IBM 7090 PROGRAM

The analytical method and the IBM 7090 computer program for the solution
of the characteristic determinant (eq. (20)) were developed under NASA Contract
No. NASr-111 by the AeroJet-General Corporation, Space Propulsion Division of
the Iiquid Rocket Plant, Azusa, California.® The following evaluation is based
on the actual performance of the program in computing natural vibration fre-
quencles over a wide range of cone geometries with different numbers of terms
included in the fiisplacement polynomials.

The IBM program is used to compute the extensional frequency parameter Ag

and corresponding mode shapes for specified input values of the following
parameters:

5 number of circumferential waves

a cone half-angle, degrees

A ratio of cone length to fixed-end radius

n number of terms in displacement polynomials

For convenience, the inextensional frequency parameter Ai/KhTE is also
computed and included in the output. A typlcal print out is shown in table IV.
The mode shape parameters Aj, B;, and C; are coefficlents of the displace-

ment polynomials expressed in terms of a nondimensional axial coordinate x/l
and normalized with respect to A;; that 1is,

w(x,P,t) = [;l<%>2 + A2<%>3 + 0. . F An<%)n+f]s sin sf sin wt

v(x,0,t) = ;J_(:_}-LC-) + Bz(%f + .0+ Bn(}z-syj cos sf sin wt
u(x,8,t) = Cl(%) + Cz<§>2 + ...+ Cn(%)ﬁwfi;gig sin wt

*a11 changes in the final report submitted by Aerojet-General Corporation
under Contract NASr-111(AGC Rept. No. 2581a) are the responsibility of Aerospace
Research Assoclates, Inc., and not Aerojet-General Corporation.
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For example, at the free end, x = 1, the relative maximum values of the three
displacement components are

Vpax(1) (Al + Ayt e 0.t An)s

vmax(?,) =(Bl+B2+ e o o +Bn>

(or +0p+ v v scy)
Unax(1) = = 2 - —

The only basls for ascertaining the accuracy of a computed frequency (at
least within the limitations of the analytical method) is the apparent degree
of convergence for a specified number of terms in the displacement polynomials.
Since the number of terms is limited to six, the degree of convergence can only
be estimated by comparing the results for six terms with those for fewer numbers

of terms.

Table V is a summary of frequency results over a wide range of cone geome-
tries, in terms of the nondimensional extensional frequency parameter AE

(which is proportional to the square of the natural frequency). Frequencies
were computed for the following parameters:

s =1, 12
@ = 09, 200, 4o°
A=1, 4 10
n=3 k4 5, 6

It is noted that, with the exception of the 4O° half-angle cones at
s = 12, the frequencies appear to be converging toward definite values. For
the cases corresponding to a = 40° and s = 12, where no values are shown,
the computed frequencles were obviously in error, and apparently the program
failed. At s = 1, the results appear to be valid even for « = 40, but the
shorter the cone the better the convergence. It should also be noted that the
values of table V are proportional to the square of the frequency and, there-
fore, the corresponding deviations in frequency are proportionately less.

Iimitations of the program appear to result from retaining axisl and tan-
gential inertia terms which become quite small compared with corresponding
radial inertis terms for large values of s. For example, it can be seen from
appendix A that the difference in magnitudes of the coefficlents aij’ €13»

and hjj, which represent inertias in the radlal, tangential, and axial direc-
tions, respectively, becomes progressively greater as s increases. The
ratios eij/aij and hij/aij are proportional to l/s2 and l/%esh,
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respectively. Consequently, for relatively large values of A and s, the
tangential and axlal inertias become unimportant with respect to the radial
inertla and apparently give rise to convergence problems. If the coefficients
ejy and hyy are assumed to be zero, the eigenvalue Ay will notl appear in

the center and lower diagonal subsections of the characteristic determinant

(eq. (20)). The determinant can then be reduced to an unsymmetric determinant
one-third the size of the original determinant, and the order of the eigenvalue-
eigenvector problem will be reduced accordingly.
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APPERDIX C

COEFFICIENTS OF EQUATION (31)

The coefficients of equation (31) for approximate extensional solution of
conical shell with two-term polynomial mode shape are as follows:

aqp = (s2 + 1)(% + % u)
a1o = (52 + 1)(%—- + % p)
app = (s2 + 1)(% + %- p,)
b1y = - %(8 + bp) - Ebdhkhs2(l - cos a)® - 8M37\2|.L cos a1l - cos a)

8M2u2cosga. o\%cos a2 2u cos a
- - = 5(1 - cos @) + ——r
g2 s 3 s

16 .2 8 >

- 2Mu?\g|.12cosea. - 8M37\2u cos a - 8M2?\2 + 5 ATcos o - 3 7\2cos a

byp = EEZ;‘.'(JQ + 8u) - 2M57\hs2(l - cos cx,)2 - lOMQ\gu cos afl - cos a)
5

2naal 2
12Mzp“cos“a, 2N cos o
- 2 - ,}(l - cos a) + é;_;_co_saj - 2M57\2u20032a

s2 s A%s

lOM;_Qxeu cos a - 12[\/[37\2 + 2)\2u cos®a + 67\2cos a - 37\200s2c¢,

12 7\2u cos®a

5

2k
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_ co; a,(2)+ + 18p) - 2M67\)+32(1 - COS CL)2 - 121\457\2p, cos afl - cos a)
s

8M, p2cos? N2 o
_ oMy cosTa 7\COSOL-6--s(l--cosoz.)+2ﬂiff -12M57\2ucosa
52 S 5 ON%s _

- 2M6?\2u2cosga, - 18M)_|_7\2 + 27\2p. cos®q, + -35é 7\2cos a

18 42
= A
>

cosZa - 57\2;.1 cos®a,
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TABLE I.- CALCULATED VALUES OF THE NONDIMENSIONAL

INEXTENSIONAL FREQUENCY PARAMETER AI/§“TQ

. AI/&ATe for -
A=2 A=l A=6
a = 0°
2 0.73012 0.6334h 0.61494
3 563157 4.9297 L.8577
3 18.753 17.924 17.770
5 48.037 46.625 46.363
6 102.16 100.03 99.640
7 192.13 189.15 188.60
8 330,94 326.98 326.25
9 533.60 528.52 527.58
10 817.09 810.77 809.60
11 1200.% 1192.7 1191.3
12 1704%.6 1695.4 1693.7
a = 15°
2 0.20284 0.067545 0.031107
3 1.4390 .51808 24305
4 5.0514 1.8770 .88639
5 12.921 4.,8759 2.3097
6 27.467 10.455 4.9605
7 51.645 19.761 9.3859
8 88.950 34.153 16.232
9 143.41 55.196 26.245
10 219.60 84 .664 ho.270
11 322.62 12k .54 59.251
12 458.12 177.02 8h.233
a = 300
2 0.072660 0.015330 0.0054584
3 49615 .11h457 .041697
4 1.7317 L4123, .15105
5 h.h2k3 1.0683 -39242
6 9.4028 2.2875 .8ha1kT
7 17.680 4. 320L 1.5907
8 30.452 7.4631 2.7492
9 hg.101 12.057 4.4h330
10 75.191 18.490 6.8157
11 110.47 27.194 10.026
12 156.88 38.648 1h.251
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TABLE II.- CALCULATED VALUES OF THE NONDIMENSIONAL

EXTENSIONAL FREQUENCY PARAMETER Ag

1.2185
3055k
.093183
.035172
.015689
.0079261
.0043982
.0026237
.0016572
.0010962
.00075315
.00053408

0.64928
17989
.05984 2
.023823
.010963
.0056430
.0031681
. 001904k
. 0012091
.00080268
. 00055294
.0003%9283

0.28515
.079415
.027255
.011120
.0051982
.0027018
.0015260
. 00092085
. 00058613
. 00038977
.00026881
.0001911k%

AE for -

A=1L
a = 0°

3.025
L7569
L11711
.040103
.017029
.0083715
.0045703
. 0026986
.0016931
.0011147
.00076334
. 00054001

o = 15°

1.%010
27778

-0T53T>
026877

.011630
- 0057750
.0031691
.0018776
.0011806
. 0007787
.00053366
.00037785

a = 30°

0.55073
.12016
.034610
.012685
-005559h4
.0027TT71
. 0015296
.00090791
.0005T149

.00037T09
. 00025860
.00018316

A=6

y. 1121
52576
.12218
. 040987
017250
.008kL4 22
0045976
.0027106
.0016989
.0011179
.00076511
.00054107

1.8720
.31187
.078334

.026998
.011492

. 0056560
. 0030898
.0018250
. 0011453
.00075421
.00051649
. 00036543

0.72017
.13922
-037107
.013063
. 0056078
. 002770k
.0015163
.00089657
. 00056295
. 00037084
. 00025406
.00017977
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TABLE III.- COMPARISON OF CALCULATED AND EXPERTMENTAL FREQUENCIES

FCOR FIXED-FREE CYLINDRICAL SHELLS

[1020 steel; h = 0,010 in.; & = i in.; A = 2.232]

Inextensional | Extensional Combined Experimentel | Frequency Frequency
Mode frequency frequency frequency, frequency from obtained
number, from from 2 4 £ 2)1/2 from theory of | by egs. (20) |
s eq. (11), eq. (28), (I E ’ ref. 15, ref. 15, and (22),
f1, cps g, cps Cps cps cps cps
First beam mode
3 h6.3 603 60k 400 Lop 513
5 140 22l 265 239 219 2kg
7 280 116 303 304 310 300
8 368 88.7 379 376 396 377
10 579 56.9 581 595 610 582
11 701 h7.1 703 713 37 702
12 836 39.6 837 Blly 876 837
13 982 33.8 983 992 1027
Second beem mode
7 280 723 T 837 Th2
8 368 553 664 693 666
9 L67 437 640 6h2 665
12 836 247 872 855 931
13 982 211 1004 992 1071
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DELTA ROOT

0.99999999E-02
0.59999999E~01
0.11000000E~-00
0.16000000E-00
0.20999999E-00
0.16049999E-00
0.16099999E-00
0.16149999E~00
0.16199999E-00
0.16249999E-00
0.16299999E-00
0.16349999E-~00
0.16399999E-00

0.09993999E 01
0.94341283E-02
0.10419840E 01

GENERALIZED MASS = 0.34299628E 03

INEXTENSIONAL COMPONENT = 0.18769860E O1 (A{/&AT2>

TABLE IV.- TYPICAL COMPUTER PROGRAM PRINT OUT

RESIDUAL

0.82407334LE-07
0.71415751E-07
0.44998153E-07
0.38417154E-08
-0.509T72322E-07
0.335905T1E-08
0.28750290E-08
0,23896348E-08
0.19028754E-08
0.14147523E-08
0.92526665E-09
0.43441983E-09
-0.57786929E-10

Number of Terms = 6
Lambda = 4,00
Alpha = 15.00

EIGEN-DELTA (AE)

0.26876745E-01

Mode Shape Coefficients:

Aj,A

2, L) L]
Bl,BE’ * o @
C1,Cpp -

. A

n

Bn

. Cn

~0.28254224E 01 0.5666T109E 01 -0.68597585E 01 0.4L4116732E 01 -0.11561308E Ol
~0.86286T796E 00 0.17059352E 01 -0.21329884E 01 0.14602529E 01 -0.40T763597E-00
~0.5T33701LE 00 -0.31412425E 01 0. 7H1LT7T71E Ol -0.65043095E 01 0.20730519E Ol
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TABLE V.- DEPENDENCE OF FREQUENCY ON NUMBER OF TERMS IN DISPLACEMENT

POLYNOMIALS FOR A WIDE RANGE OF CONE GEOMETRIES

Ay for -
n S *
a = 0° a = 20° a = 40°
=1
3 1 0.31007 0.16353 0.054484
I 1 . 30740 .16202 «053756
5 1 .30632 .16138 .053439
6 1 30576 .16105 053361
3 12 .00052357 .00034466 .00010327
N 12 . 00051130 .0003252% | ceeemmmeem
5 12 .00050854 .00032150 |  memmmmeeee
6 12 .00050587 .00031909 |  —mmmmememe
-y
3 1 3.2163 1.2158 0.31436
L 1 23,1004 1.1118 2731h
5 1 3.0518 1.0721 . 25627
6 1 3.0245 1.0533 2482h
3 12 .00054981 .00042593 .00019230
4 12 .00054271 . 00032717 .00010826
5 12 .00054093 .00031385 | @ ec;eme———e—-
6 12 . 00054001 .00031129 | cmmmmeeeo
= 10
3 1 5.2343 2.9482 0.92050
b 1 5.1006 2.1900 6107k
5 1 5.0611 1.9279 148824
6 1 5.0275 1.8105 43014
3 12 . 00055106 . 00074946 .00056632
b 12 .00054483 .00039215 .00021094
5 12 . 00054261 .00031483 .00012701
6 12 .00054162 .00029396 [  emmmme——e-
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Figure 1l.- Conicel shell nomenclature.
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Figure 2.- Circumferential mode shapes.
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Figure 5.- Experimental and theoretical frequencies of type 304 stalnless-steel cone.
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Figure 8.- Conical shell imbedded in low-melting-point blsmuth-tin alloy.
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Figure 9.- Vibration nodes for clrcumferential mode s = h, L-65-25
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Figure 10.- Closeup of vibration mode for s
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Figure 11.- Comparison of maximum extensional strains for s =14 distribution for
(N =1k, a=159). s = k.



Ly

af

“The aeronautical and space activities of the United States shall be
conducted so as io coniribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



